Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add filters

Language
Document Type
Year range
1.
researchsquare; 2021.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-1121993.v1

ABSTRACT

To establish a novel SARS-CoV-2 human challenge model, 36 volunteers aged 18-29 years without evidence of previous infection or vaccination were inoculated with 10 TCID50 of a wild-type virus (SARS-CoV-2/human/GBR/484861/2020) intranasally. Two participants were excluded from per protocol analysis due to seroconversion between screening and inoculation. Eighteen (~53%) became infected, with viral load (VL) rising steeply and peaking at ~5 days post-inoculation. Virus was first detected in the throat but rose to significantly higher levels in the nose, peaking at ~8.87 log10 copies/ml (median, 95% CI [8.41,9.53). Viable virus was recoverable from the nose up to ~10 days post-inoculation, on average. There were no serious adverse events. Mild-to-moderate symptoms were reported by 16 (89%) infected individuals, beginning 2-4 days post-inoculation. Anosmia/dysosmia developed more gradually in 12 (67%) participants. No quantitative correlation was noted between VL and symptoms, with high VLs even in asymptomatic infection, followed by the development of serum spike-specific and neutralising antibodies. However, lateral flow results were strongly associated with viable virus and modelling showed that twice-weekly rapid tests could diagnose infection before 70-80% of viable virus had been generated. Thus, in this first SARS-CoV-2 human challenge study, no serious safety signals were detected and the detailed characteristics of early infection and their public health implications were shown. ClinicalTrials.gov identifier: NCT04865237.

2.
researchsquare; 2021.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-1056707.v1

ABSTRACT

Cell penetrating peptides are unique, 5-30 amino acid long peptides that are able to breach cell membrane barriers and carry cargoes intracellularly in a functional form. Our prior work identified a synthetic, non-naturally occurring 12-amino acid long peptide that we termed cardiac targeting peptide (CTP: APWHLSSQYSRT) due to its ability to transduce cardiomyocytes in vivo. Studies looking into its mechanism of transduction identified two lung targeting peptides (LTPs), S7A (APWHLSAQYSRT) and R11A (APWHLSSQYSAT). These peptides robustly transduced human bronchial epithelial cell lines in vitro and mouse lung tissue in vivo. This uptake occurred independently of clathrin mediated endocytosis. Biodistribution studies of R11A showed peak uptake at 15 minutes with uptake in liver but not kidneys, indicating primarily a hepatobiliary mode of excretion. Cyclic version of both peptides was ~100-fold more efficient in permeating cells than their linear counterparts. As proof of principle, we conjugated anti-spike and anti-envelope SARS-CoV-2 siRNAs to cyclized R11A and demonstrate anti-viral efficacy in vitro. Our work presented here identifies two novel lung-specific cell penetrating peptides that could potentially deliver myriad therapeutic cargoes to lung tissue.

3.
researchsquare; 2021.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-829214.v1

ABSTRACT

SARS-CoV-2 has a broad mammalian species tropism infecting humans, cats, dogs and farmed mink. Since the start of the 2019 pandemic several reverse zoonotic outbreaks of SARS-CoV-2 have occurred in mink, one of which reinfected humans and caused a cluster of infections in Denmark. Here we investigate the molecular basis of mink and ferret adaptation and demonstrate the spike mutations Y453F, F486L, and N501T all specifically adapt SARS-CoV-2 to use mustelid ACE2. Furthermore, we risk assess these mutations and conclude mink-adapted viruses are unlikely to pose an increased threat to humans, as Y453F attenuates the virus replication in human cells and all 3 mink-adaptations have minimal antigenic impact. Finally, we show that certain SARS-CoV-2 variants emerging from circulation in humans may naturally have a greater propensity to infect mustelid hosts and therefore these species should continue to be surveyed for reverse zoonotic infections.

4.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.07.14.21260488

ABSTRACT

Background Lateral flow immunoassays (LFIAs) have the potential to deliver affordable, large scale antibody testing and provide rapid results without the support of central laboratories. As part of the development of the REACT programme extensive evaluation of LFIA performance was undertaken with individuals following natural infection. Here we assess the performance of the selected LFIA to detect antibody responses in individuals who have received at least one dose of SARS-CoV-2 vaccine. Methods This is a prospective diagnostic accuracy study. Setting Sampling was carried out at renal outpatient clinic and healthcare worker testing sites at Imperial College London NHS Trust. Laboratory analyses were performed across Imperial College London sites and university facilities. Participants Two cohorts of patients were recruited; the first was a cohort of 108 renal transplant patients attending clinic following SARS-CoV-2 vaccine booster, the second cohort comprised 40 healthcare workers attending for first SARS-CoV-2 vaccination, and 21 day follow up. A total of 186 paired samples were collected. Interventions During the participants visit, capillary blood samples were analysed on LFIA device, while paired venous sampling was sent for serological assessment of antibodies to the spike protein (anti-S) antibodies. Anti-S IgG were detected using the Abbott Architect SARS-CoV-2 IgG Quant II CMIA. Main outcome measures The accuracy of Fortress LFIA in detecting IgG antibodies to SARS-CoV-2 compared to anti-spike protein detection on Abbott Assay. Results Using the threshold value for positivity on serological testing of ≥7.10 BAU/ml, the overall performance of the test produces an estimate of sensitivity of 91.94% (95% CI 85.67% to 96.06%) and specificity of 93.55% (95% CI 84.30% to 98.21%) using the Abbott assay as reference standard. Conclusions Fortress LFIA performs well in the detection of antibody responses for intended purpose of population level surveys, but does not meet criteria for individual testing.

5.
researchsquare; 2021.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-637724.v1

ABSTRACT

The SARS-CoV-2 B.1.617.2 (Delta) variant was first identified in the state of Maharashtra in late 2020 and has spread throughout India, displacing the B.1.1.7 (Alpha) variant and other pre-existing lineages. Mathematical modelling indicates that the growth advantage is most likely explained by a combination of increased transmissibility and immune evasion. Indeed in vitro, the delta variant is less sensitive to neutralising antibodies in sera from recovered individuals, with higher replication efficiency as compared to the Alpha variant. In an analysis of vaccine breakthrough in over 100 healthcare workers across three centres in India, the Delta variant not only dominates vaccine-breakthrough infections with higher respiratory viral loads compared to non-delta infections (Ct value of 16.5 versus 19), but also generates greater transmission between HCW as compared to B.1.1.7 or B.1.617.1 (p=0.02). In vitro, the Delta variant shows 8 fold approximately reduced sensitivity to vaccine-elicited antibodies compared to wild type Wuhan-1 bearing D614G. Serum neutralising titres against the SARS-CoV-2 Delta variant were significantly lower in participants vaccinated with ChadOx-1 as compared to BNT162b2 (GMT 3372 versus 654, p<0001). These combined epidemiological and in vitro data indicate that the dominance of the Delta variant in India has been most likely driven by a combination of evasion of neutralising antibodies in previously infected individuals and increased virus infectivity. Whilst severe disease in fully vaccinated HCW was rare, breakthrough transmission clusters in hospitals associated with the Delta variant are concerning and indicate that infection control measures need continue in the post-vaccination era.

6.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.02.26.21252512

ABSTRACT

Abstract Background England has experienced high rates of SARS-CoV-2 infection during the COVID-19 pandemic, affecting in particular minority ethnic groups and more deprived communities. A vaccination programme began in England in December 2020, with priority given to administering the first dose to the largest number of older individuals, healthcare and care home workers. Methods A cross-sectional community survey in England undertaken between 26 January and 8 February 2021 as the fifth round of the REal-time Assessment of Community Transmission-2 (REACT-2) programme. Participants completed questionnaires, including demographic details and clinical and COVID-19 vaccination histories, and self-administered a lateral flow immunoassay (LFIA) test to detect IgG against SARS-CoV-2 spike protein. There were sufficient numbers of participants to analyse antibody positivity after 21 days from vaccination with the PfizerBioNTech but not the AstraZeneca/Oxford vaccine which was introduced slightly later. Results The survey comprised 172,099 people, with valid IgG antibody results from 155,172. The overall prevalence of antibodies (weighted to be representative of the population of England and adjusted for test sensitivity and specificity) in England was 13.9% (95% CI 13.7, 14.1) overall, 37.9% (37.2, 38.7) in vaccinated and 9.8% (9.6, 10.0) in unvaccinated people. The prevalence of antibodies (weighted) in unvaccinated people was highest in London at 16.9% (16.3, 17.5), and higher in people of Black (22.4%, 20.8, 24.1) and Asian (20.0%, 19.0, 21.0) ethnicity compared to white (8.5%, 8.3, 8.7) people. The uptake of vaccination by age was highest in those aged 80 years or older (93.5%). Vaccine confidence was high with 92.0% (91.9, 92.1) of people saying that they had accepted or intended to accept the offer. Vaccine confidence varied by age and ethnicity, with lower confidence in young people and those of Black ethnicity. Particular concerns were identified around pregnancy, fertility and allergies. In 971 individuals who received two doses of the Pfizer-BioNTech vaccine, the proportion testing positive was high across all age groups. Following a single dose of Pfizer-BioNTech vaccine after 21 days or more, 84.1% (82.2, 85.9) of people under 60 years tested positive (unadjusted) with a decreasing trend with increasing age, but high responses to a single dose in those with confirmed or suspected prior COVID at 90.1% (87.2, 92.4) across all age groups. Conclusions There is uneven distribution of SARS-CoV-2 antibodies in the population with a higher burden in key workers and some minority ethnic groups, similar to the pattern in the first wave. Confidence in the vaccine programme is high overall although it was lower in some of the higher prevalence groups which suggests the need for improved communication about specific perceived risks. Two doses of Pfizer-BioNTech vaccine, or a single dose following previous infection, confers high levels of antibody positivity across all ages. Further work is needed to understand the relationship between antibody positivity, clinical outcomes such as hospitalisation, and transmission.


Subject(s)
COVID-19 , Drug Hypersensitivity
7.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.02.12.21251419

ABSTRACT

ObjectivesTo investigate whether the antimicrobial emollient Dermol 500 and its active components, benzalkonium chloride (BAK) and chlorohexidine dihydrochloride (CD), exhibit virucidal activity thus informing whether Dermol 500 is a suitable soap substitute for use during the COVID19 pandemic, to combat the increased incidence of work-related contact dermatitis in clinical settings that we report here. MethodsInactivation of influenza A virus and SARS-CoV-2 by Dermol 500 and the independent and combined virucidal activity of the Dermol 500 components BAK and CD was assessed by influenza A virus and SARS-CoV-2 infectivity assays. Viruses were treated with concentrations of BAK and CD comparable to Dermol 500, and lower, and infectivity of the viruses assessed by titration. ResultsDermol 500 exhibits comparable virucidal activity to alcohol-based sanitisers against influenza A virus and SARS-CoV-2. In addition, the Dermol 500 components BAK and CD exhibit independent and synergistic virucidal activity against influenza A virus and SARS-CoV-2, the causative agent of COVID19. ConclusionsThe synergistic virucidal activity of the Dermol 500 components BAK and CD makes Dermol 500 suitable as a soap substitute to treat and prevent work-related contact dermatitis in healthcare settings. KEY MESSAGESO_LIWhat is already known about this subject? O_LIWork-related contact dermatitis is a prominent issue among healthcare workers, and likely exacerbated by the enhanced hand hygiene and personal protective equipment required to control infection during the COVID19 pandemic. C_LIO_LIThe antimicrobial lotion Dermol 500 is frequently prescribed as an emollient and soap substitute to help prevent and treat dermatitis, but its use during the COVID19 pandemic was not advised as its capacity to inactivate viruses was unknown. C_LI C_LIO_LIWhat are the new findings? O_LIIncreased incidence of irritant contact dermatitis was recorded amongst healthcare workers at Kings College Hospital NHS Foundation Trust in 2020 compared to 2019. C_LIO_LIDermol 500 lotion and its antimicrobial components, benzalkonium chloride (BAK) and chlorohexidine dihydrochloride (CD), exhibit virucidal activity against influenza A virus and SARS-CoV-2, the virus responsible for COVID19 pandemic. C_LI C_LIO_LIHow might this impact policy or clinical practice in the foreseeable future? O_LIOur results demonstrate that Dermol 500 can be safely used as a soap substitute to treat work-related contact dermatitis in clinical care settings during the COVID19 pandemic. C_LIO_LIEmployers can meet their obligations under COSHH to eliminate workplace exposure to a harmful substance and substitute with an alternative product for hand hygiene. C_LI C_LI


Subject(s)
COVID-19 , Dermatitis, Contact , Dermatitis
SELECTION OF CITATIONS
SEARCH DETAIL